Crisis bifurcations in plane Poiseuille flow
نویسندگان
چکیده
منابع مشابه
1 1 M ay 2 01 5 Crisis bifurcations in plane Poiseuille flow
Many shear flows follow a route to turbulence that has striking similarities to bifurcation scenarios in low-dimensional dynamical systems. Among the bifurcations that appear, crisis bifurcations are important because they cause global transitions between open and closed attractors, or indicate drastic increases in the range of the state space that is covered by the dynamics. We here study exte...
متن کاملHopf bifurcations to quasi-periodic solutions for the two-dimensional plane Poiseuille flow
This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem. For several values of the wavenumber α, we obtain the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, previous calcula...
متن کاملTransient Start-up of Plane Poiseuille Flow
INTRODUCTION This article investigates various improvements to two existing finite volume (fv) algorithms, specifically constructed to solve transient viscoelastic flow problems. Here, we consider model problems to identify fundamental algorithmic advances. Two alternative fv-approaches are advocated and contrasted for their properties, a hybrid cell-vertex scheme and a cell-centred staggered-g...
متن کاملBurnett description for plane Poiseuille flow.
Two recent works have shown that at small Knudsen number (K) the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. ...
متن کاملSequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow
A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2015
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.91.041003